
Journal of Sound and <ibration (2002) 256(5), 955}967
doi:10.1006/jsvi.5028, available online at http://www.idealibrary.com on

0

SIMPLIFIED DISPERSION RELATIONSHIPS FOR
IN-VACUO PIPES

W. VARIYART AND M. J. BRENNAN

Institute of Sound and <ibration Research, ;niversity of Southampton, Southampton SO17 1BJ,
England. E-mail: wv@isvr.soton.ac.uk

(Received 23 August 2001, and in ,nal form 10 December 2001)

The dispersion characteristics of a pipe o!er a way to gain physical insight into its
dynamic behaviour. Whilst these can be found in the literature they are generally calculated
by numerically solving the characteristic equation. In this paper, a simpli"ed characteristic
equation of an in vacuo pipe is presented and from this analytical expressions for the
wavenumbers for the circumferential modes below the ring frequency are derived. It is
shown that before waves cut on and propagate, they change from being decaying standing
waves at low frequencies to being near"eld waves. A simpli"ed expression is also determined
for the cut on frequencies of the n*2 circumferential modes. Simulations are presented to
validate the results against some established theories of pipe vibration.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

A convenient way to investigate the dynamic behaviour of a pipe is to examine the
characteristics of axial #exural waves in the pipe wall. These are described by axial
wavenumbers or wave speeds, which are derived from the characteristic equation of the
pipe. In order to explain the dynamic behaviour of the pipe in a simple way, Lin and
Morgan [1] used the concept of a rigid tube and an in"nitely #exible tube to construct
a curve of phase velocity in the axial direction. With this curve, they concluded that all the
modes except the "rst two modes, which are the n"0 and 1 modes where n is the
circumferential mode number, have a minimum cut-on frequency corresponding to
a natural frequency of a pipe in the circumferential direction and the "rst two modes exist at
all frequencies. A more explicit explanation was provided by Cremer et al. [2], in which the
phase velocity in the axial direction was calculated from Kennard's shell theory. By
comparing this with the phase velocity of a simple structure, they explained the behaviour of
the pipe in terms of a bar, a beam and a plate. However, both pieces of work were limited as
they considered only real wave types. A complete set of dispersion curves was presented by
Fuller and Fahy [3] based on Donnell}Mushtari shell theory. All of the wave types were
considered and discussed in their paper. They demonstrated that there are also complex
wave types, which combine to give a standing near"eld wave. Nevertheless, the
wavenumbers given in their work are complicated and di$cult to interpret. In order to
provide a simple physical interpretation, Brennan et al. [4] employed a complete set of
dispersion curves along with Heckl's concept. They discussed the behaviour of individual
waves propagating along the shell in terms of #exural beam-like, plate-like bending,
longitudinal and shear waves. Recently, Finnveden [5] described the pipe as being
equivalent to the model of Timoshenko beam on a Winkler foundation. With this analysis,
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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Figure 1. Diagram showing axial, circumferential and helical wavenumbers of an in vacuo pipe.
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the wavenumber for a propagating wave of the n*1 modes of the pipe was established in
a simple form and it was shown to depend on an equivalent mass and a spring constant for
the Winkler foundation. It was clearly illustrated that, before a wave cuts on sti!ness
dominates the pipe behaviour resulting in a standing near"eld wave, and after it cuts on
mass in#uences the resulting propagating wave.

In this paper, a study of the dispersion characteristics of an in vacuo pipe is conducted. To
enable greater understanding, the wavenumbers are derived in terms of simple structural
waves such as longitudinal, torsional, and #exural waves, wherever possible. However,
before the wavenumber analysis can be conducted, the underlying shell theory has to be
simpli"ed. This is done using FluK gge's shell theory as a basis with some additional
assumptions.

2. WAVE MOTION IN AN IN <AC;O PIPE

For a thin-walled pipe, structural waves propagate in a helical pattern, and can be
represented by the wavenumber, k

��
, as shown in Figure 1 [6]. This is the vector

combination of the wave components in the axial and circumferential directions, and is
given by

k�
��
"k�

��
#k�

�
, (1)

where k
��

and k
�
are the axial and circumferential wavenumbers respectively. The axial

wavenumber is thus given by k
��

"�k�
��
!k�

�
, which is only real and hence propagating

when k�
��
*k�

�
, otherwise the wave is evanescent. Due to the closure of the pipe in the

circumferential direction, the radial displacement of the pipe takes the form of sine
or cosine functions of k

�
a�, where k

�
"n/a; n is the circumferential mode number, a

is the radius of a pipe and � is the azimuthal angle. For the n"0 mode there is only
stretching or contracting of the pipe wall, for the n"1 mode, the pipe cross-section is
undeformed, and for n*2 modes the pipe changes in shape as shown in Figure 2. Once the
mode shapes are formed around the pipe (i.e., cut on), they propagate independently along
the pipe.

With an in vacuo pipe, there are eight axial waves that can potentially exist for each mode
at any frequency. Four waves travel in the upstream direction and four waves travel in the
downstream direction. For the n*2 modes, below the ring frequency (when the wavelength
of a longitudinal wave is equal to the pipe circumference) in the downstream direction, there
is a #exural propagating wave (b"1), a near"eld wave (b"2), and a decaying standing
wave, which is a combination of two waves (b"3 and 4), which are equal in amplitude but
di!erent in phase.
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Figure 2. Mode shapes of a pipe.

3. SIMPLIFIED CHARACTERISTIC EQUATION
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In this section, a simpli"ed form of the dispersion equation based on FluK gge's shell theory
is derived. Once this has been established, relatively simple axial wavenumbers are
determined for certain conditions. It is assumed that the wall thickness is thin compared to
the radius of the pipe, the frequency range of interest is below the ring frequency and the
increasing axial #exural wavenumber after the wave cuts on is much greater than the
non-dimensional frequency (frequency normalized to the ring frequency). The cylindrical
co-ordinate system for a pipe of mid-surface radius a and wall thickness h is shown in
Figure 3, where � is a reference angle clockwise from the vertical. The equation of motion of
free vibration of the pipe is given by [7, 8]
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where u, �, w are the axial, tangential, and radial component of the displacements, and
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s"x/a being the non-dimensional axial distance along the pipe, �"h/a�12, and E, � and
� are Youngs modulus, the Poisson ratio, and density of the pipe respectively.
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Figure 3. Cylindrical co-ordinate system for a pipe.
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The solution of the equation of motion of an in vacuo pipe may be written as [9]
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where n is the circumferential mode number, b is the index for the waves, k)
��

is the
non-dimensional axial wavenumber (the axial wavenumber multiplied by the radius of the
pipe), � is the angular frequency, and ;�

��
, <�

��
, =�

��
are, respectively, the axial,

circumferential, and radial amplitude for the bth wave of the nth mode of the pipe.
Substitution of the displacements of equation (3) into equation (2) yields
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with �"�/�
�

being the frequency normalized to the ring frequency, where

�
�
"(1/a)�E/�(1!�� ) is the ring frequency.
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The non-dimensional wavenumber, k)
��
, of the thin-walled in vacuo pipe can be

determined by setting the determinant of the matrix in equation (4) to zero, i.e.,

� L �"0. (5)

This can be expanded with terms involving � grouped together, and since for a thin pipe
���1, then the higher order terms of � (i.e., �� and �) can be neglected to give
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Another assumption that can be made is that 1/k) �
��

���. This is reasonable for a thin-walled
pipe since ��+2)1�10
� for h/a"0)05 while k)

��
increases from zero to about six in the

non-dimensional frequency range of zero to one. Since k)
��

"2�a/�
��
, where �

��
is the axial

wavelength of the bth wave of the nth mode, and �"h/�12a, the assumption can be

expressed as, �
��
��h/�3+2h. Physically, this implies that waves with an axial wavelength

smaller than about two times of the wall thickness are neglected. In addition, it is assumed
that the product of �� �� is very small since the frequency range of interest is below the ring
frequency and thus it can also be ignored. After applying these assumptions equation (6)
reduces to
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Below the ring frequency, this equation can be used to determine the
wavenumber}frequency characteristics of a thin-walled pipe for any of the circumferential
modes. However, it is still relatively complicated, and can be greatly simpli"ed by making
the assumption of k) �

��
��� as used by Heckl [10]. This assumption physically means that

wave motion with very long axial wavelengths do not contribute greatly to the overall
motion of the pipe. However, this is not true around cut-on frequencies since k)

��
is zero,

when � has a value between zero and one. A further condition of �k)
��
/��'1 just after the

wave has cut on is required, which only applies to the n*2 modes below the ring frequency
(k)

��
is proportional to � for n"0). Cremer [10] pointed out that this does not result in large

errors.
The last three terms containing �� and � in equation (7) including the term

(1!��)k) �
��

�� can thus be neglected in comparison with the term �
�
(1!�)�(1#�)k) �

��
. The

term 2(1!�)� [kK �
��

!n� (n�!1)] kK �
��
can also be neglected using the previous assumption of

1/k) �
��

���. Therefore, at frequencies below the ring frequency (� (1), equation (7) becomes
for n*2
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This can be rearranged to give the relationship between the non-dimensional frequency and
the axial wavenumber

��"(��(k) �
��

#n�)�(k) �
��

#n�!1)�#(1!��)k) �
��
)/(k) �

��
#n�)(k) �

��
#n�#1), n*2. (9)

The "rst term on the right side of equation (9) is related to strain energy of the pipe-wall
#exure and the second term is related to membrane strain energy [6]. The cut-on
frequencies, �

��
, can be determined from equation (9) by setting k)

��
"0, to give

��
��

"��n�(n�!1)�/(n�#1). (10)

The cut-on frequency given in the above equation is similar to that reported by Finnveden
[5], Pavic [11] and Johns and Allwood [12]. It can be further simpli"ed to �

��
+� (n�!�

�
),

which will underestimate the cut-on frequencies by 6)8% for the n"2 mode, 1)2% for the
n"3 mode and less than 0)4% for n"4 modes.

4. APPROXIMATE AXIAL WAVENUMBERS

In this section, the axial wavenumbers for the circumferential modes are derived in terms
of the wavenumbers of simple structures such as a bar, a shaft, a beam and a plate. To
obtain the wavenumbers, the roots of the characteristic equation (7) are found for the n"0
and 1 modes, and equation (8) for the n*2 modes, using a similar approach to that taken
by Young [13]. Even though the characteristic equation has been simpli"ed, expressions for
the wavenumbers remain rather complicated. To gain more physical insight, further
simpli"cation is carried out using some additional assumptions, i.e., (a) �� can be neglected
compared to unity, (b) higher order wavenumbers can be neglected when considering the
small wavenumbers such as the longitudinal and torsional wavenumbers for the n"0mode
and vice versa [8].

Equations (7) and (8) can be expressed as a polynomial of axial wavenumbers, k)
��
, as
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�
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where the g's are coe$cients. Solution of this equation leads to the eight wavenumbers. At
low frequencies these can be divided into two groups. One group contains the four small
wavenumbers, which are the longitudinal and torsional wavenumbers for the n"0 mode,
#exural and near"eld wavenumbers for the n"1 mode and the #exural plate-like and
near"eld wavenumbers for the n*2 modes. The other group contains the four large
wavenumbers known as standing near"eld wavenumbers. Since they are distinctive, FluK gge
[8] suggested that the small wavenumbers could readily be determined by neglecting higher
orders and the above equation becomes quadratic in k) �

��

g
�
k) �
��

#g
�
k) �
��

#g
�
"0, (12)

which gives the following wavenumbers:
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�
]. (13a, b)

By ignoring the lower orders of equation (11), the large wavenumbers can also be
determined from the resulting quadratic equation in k) �

��
:
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"0, (14)

which gives the wavenumbers

k) �
��
, k) �

��
"(1/2g

�
) [!g


$�g�


!4g

�
g
�
]. (15a, b)
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Since the above method depends up on the distinction between small and large
wavenumbers, this method is useful for the "rst few circumferential modes of the pipe.
However, for the higher modes, such a method can still be applied but is valid only just after
the waves cut on where the wavenumbers are relatively small.

The polynomial coe$cients of axial wavenumbers, k)
��
, for the n"0 and 1 modes can be

obtained by expanding equation (7) into the polynomial form of equation (11), in which the
terms containing (n�!1)n� are set to zero. They are given by

g
�
"((1!�)/2)��, g


"(1!�) (2n�!�)��, g

�
"((1!�)/2) (1#��!��!��),

g
�
"!((1!�)/2)[(2n�#1)#2(1#�)]��#((3!�)/2)��,

g
�
"�

�
[(3!�)n�!(n�#1)n���#2(1!��)]��. (16a}e)

4.1. AXIAL WAVENUMBERS OF THE n"0 MODE

By neglecting �� in comparison with unity, the coe$cients for the n"0 mode given in
equation (16) can be written in terms of the non-dimensional longitudinal (k)

	
) and torsional

(k)
�
) wavenumbers normalized to the radius of the pipe (described in Appendix A) as follows:
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g
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�
. (17a}e)

Solving for small wavenumbers using equation (13) gives

k) �
��

"k) �
	
#��k) �

	
/(1!k) �

	
), k) �

��
"k) �

�
. (18a, b)

Because at low frequencies, ���1, the longitudinal wavenumber is small. Hence, the second
term in equation (18a) containing a power of 4 can be neglected in comparison with the "rst
term, which gives

k) �
��

"k) �
	
, k) �

��
"k) �

�
. (19a, b)

The large standing near"eld wavenumbers can be found by solving equation (15) to give

k) �
��
, k) �

��
"�$���!(1!��)(1!k) �

	
)/��. (20a, b)

At low frequencies, the second term in the square root containing �� is much larger than the
"rst term and hence, equation (20a, b) becomes

k) �
��
, k) �

��
"$j�(1!��)(1!k) �

	
)/��, (21a, b)

where j"�!1.

4.2. AXIAL WAVENUMBERS OF THE n"1 MODE

Using a similar approach to that used for the axial wavenumbers of the n"0 mode, the
wavenumbers of the n"1 mode can be found. For this mode, the non-dimensional
longitudinal (k)

	
), torsional (k)

�
) and #exural beam-like (k)

�
) wavenumbers (described in

Appendix A) are used to represent the behaviour of the pipe.
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By substituting k)
	
, k)

�
and k)

�
into equation (16) and neglecting �� in comparison with

unity, the polynomial coe$cients for the n"1 mode can be written as follows:
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The small wavenumbers of the n"1 mode are obtained by solving equation (13) to give
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This can be compared with the wavenumbers for a Timoshenko beam (k
�
) given by [4]

k�
�
"�

�
[k�

�	
#k�

��
/

�
]$�

�
�[k�

�	
!k�

��
/

�
]#4k�

��
, (23c, d)

where k
�	
, k

��
, k

��
are the longitudinal, torsional and #exural beam-like wavenumbers of

a beam, and 
�
is Timoshenkos shear coe$cient. At relatively low frequencies (�(0)5)

higher order terms such as k) �
	
and k) �

�
can be neglected, and k) �

	
can be ignored in comparison

with unity so equation (23a, b) becomes
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Thus, the behaviour of the n"1 mode of the pipe is very similar to a Timoshenko beam in
this frequency range. At very low frequencies when �(0)1, k) �

	
, k) �

�
and k) �

�
are much less than

unity and their higher order terms can be ignored. The wavenumbers are then given by

k) �
��
, k) �

��
"$k) �

�
. (25a, b)

Thus, at very low frequencies, the n"1 mode of a pipe behaves like an Euler}Bernoulli
beam. The large wavenumbers of the n"1 mode can also be determined by solving
equation (15) to give

k) �
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, k) �

��
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)/�� . (26a, b)

Again, at low frequencies the second term in the square root containing �� is much larger
than the "rst term and therefore, equation (26) becomes

k) �
��
, k) �

��
"$j�[1!��)(1!k) �

	
)/��, (27a, b)

which are the same as the wavenumbers obtained for the n"0 mode.

4.3. AXIAL WAVENUMBERS OF THE n*2 MODES

After the waves for the n*2 modes cut on, the #exural wavenumbers increase rapidly
with increasing frequency. The standing near"eld wavenumbers obtained by the method
discussed above are limited to low frequencies where there are large di!erences between
them. To allow the method to be used at higher frequencies equation (8) is rewritten with the
assumption of k) �

��
#n��1, to give

����#(1!��!��)��!2(1!��)n��#(1!��)n�"0, (28)

where �"k) �
��

#n�. Neglecting the last term of equation (28) gives

����#(1!��!��)�!2(1!��)n�"0, (29)
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from which the wavenumbers of the standing near"eld waves can be determined. The
solution of equation (29) is

�
�����

"�

[!(3z���!(1!��!��)/��z���)$j�3(3z���#(1!��!��)/��z���)], (30)

where z"((1!��)/��)[1#�1#(1!��!��)�/27(1!��)���n�]n�.
Hence, the standing near"eld wavenumbers are given by
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�����

"!n�#�

[!(3z���!(1!��!��)/��z���)$j�3(3z���#(1!��!��)/��z���)].

(31)

Because the near"eld wavenumber is small compared with the others it can still be
determined using a quadratic equation. By expressing equation (8) in the polynomial form
of equation (11), the polynomial coe$cients for the n*2 modes can be written in terms of
the cut-on frequency (�

��
) and are given by

g
�
"��, g


"2��(2n�!1),

g
�
"1#��!��!��#6��

��
((n�#1)/(n�!1))�1!��!��#6��

��
,

g
�
"2��

��
(2n�!1)((n�#1)/(n�!1))!��(2n�#1)�!2n�(��!2��

��
),

g
�
"n�(n�#1)(��

��
!��)�!n�(��!��

��
). (32a}e)

From these, the near"eld wavenumber, k)
��
, is found using equation (13) and is

k) �
��

"n� [(��!2��
��
)!�(1!��#3��

��
)(��!��

��
)#��

��
]/(1!��!��#6��

��
). (33)

To determine kK
��
, equation (11) is rewritten in the form of
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��
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Arranging equation (34) in terms of a polynomial of axial wavenumbers, k)
��
, gives
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Following the method suggested by Kreyszig [14], the solution of the #exural wavenumber
can be found by comparing the last term in the above equation with the last term in
equation (11) to give
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�
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�
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��
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��
k) �
��

"(!g
�
#�g�

�
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�
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�
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�
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��
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. (36)

Substituting for the polynomial coe$cients yields the following expression:

k) �
��

"n�[(��!2��
��
)#�(1!��#3��

��
)(��!��

��
)#��

��
]/��k) �

��
k) �
��
. (37)

As previously mentioned, the quadratic method can be used to determine k)
��

and k)
��

when
they are relatively small in comparison with the standing near"eld wavenumbers, kK

��
and

kK
��
. This implies that at very low frequencies, ��kK �

��
kK �
��

:1!��!��#6��
��
. From

equations (33) and (37), when ���
��
, k)

��
and k)

��
are standing near "elds and can be

approximately given by
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��
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��
k) �
��
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TABLE 1

P<C pipe data

E (N/m�) � (kg/m�) � a (mm) h (mm)

3)974�10� 1460 0)33 33)2 2)2
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At � around �
��
, the equations can be rewritten as

k) �
��

"n�(��!��
��
)/��k) �

��
k) �
��
, k) �

��
"n�(��!3��

��
)/��k) �

��
k) �
��
. (39)

To determine the frequency at which the k)
��

and k)
��

waves change from standing near"eld
waves to near"eld waves the square root term in equations (33) and (37) is set equal to zero
to give

�"�
��
�(1!��#2��

��
)/(1!��#3��

��
). (40)

The frequency interval (�) when k)
��

behaves as a near"eld wave is given by

�"�
��

!�"�
���1!�1!

��
��

1!��#3��
��
�:

��
��

2 (1!��#3��
��
)
. (41)

Equation (41) shows that the frequency interval increases with higher circumferential modes
of the pipe because of the increasing cut-on frequency, which is demonstrated graphically
later in the paper.

5. NUMERICAL EVALUATION OF THE SIMPLIFIED DISPERSION CHARACTERISTICS

A set of dispersion curves from the simpli"ed model developed in the previous sections is
compared with those obtained from the shell theories developed by Brevart and Fuller [15],
Kennard [16] and FluK gge. The properties of the pipe used in the comparison are given in
Table 1. To verify the model, simulations were carried out for each mode number. This
simpli"ed model is calculated from equations (18) and (20) for the n"0 mode, equations
(23a, b) and (26) for the n"1 mode, and equations (31), (33) and (37) for the n*2 modes.
The simulations are shown in Figure 4. It can be seen that Kennard's and FluK gge's shell
theories give a similar result. There are slight di!erences at the cut-on frequency for the
higher modes due to the di!erent assumptions in both theories.

The discussion for the dispersion curves produced by the simpli"ed model is separated
into three groups, breathing (n"0), bending (n"1), and circumferential (n*2) modes.
The positive real and imaginary parts of the non-dimensional wavenumbers, b"1, 2, 3 and
4, are, respectively, presented in the upper and lower parts of the graphs in Figure 4. For the
n"0 mode, the model is consistent with Kennard's and shell theory up to about �"0)9
before the longitudinal wavenumber (k)

	
) reaches unity leading to the singularity of the term

��k) �
	
/(1!k) �

	
) (equation (18)) resulting in k)

��
becoming in"nite. When k) �

	
(1, this term is

small so that the wavenumber k)
��

can be approximated by k)
	
. The other wavenumbers,

k)
��

represented by the torsional wave k)
�
and the standing near"eld waves k)

��
, k)

��
are in

good agreement with both referenced theories up to the ring frequency. Both k)
��
,

k)
��

characterized by a complex wavenumber are equal in magnitude but opposite in phase
and are thus standing near "eld waves whose amplitudes rapidly decay with increasing
distance from their source. It can be seen that close to the ring frequency (�'0)8 ), the real



Figure 4. Dispersion curve of the mode number (a) n"0 to (f ) n"5. Key: ) ) ) ) ) ) , simpli"ed model; } } } } ,
FluK gge theory; **, Kennard theory.
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part of the standing near "eld decays to zero, whichmeans that the wavelength of this waves
rapidly increases towards in"nity. This is accompanied by a large increase in the
k)
��

wavenumber, which means that its behaviour deviates from that of a longitudinal wave.
Similar behaviour can also be seen for the other circumferential modes. For the n"0 mode,
only longitudinal and the torsional waves propagate in the pipe wall, implying that the
dynamic behaviour of the pipe in this mode is similar to that of a membrane.
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The simpli"ed expressions for the #exural wavenumbers kK
��

and the standing near "eld
kK
��

, kK
��

wavenumbers of the n"1 mode (equations (23) and (27) respectively) are valid up
to frequencies of about �"0)8, while that for the near "eld wavenumber kK

��
is consistent

up to the ring frequency. At very low frequencies, the n"1 mode (excluding standing near
"eld waves) behaves similarly to the Euler}Bernoulli beam. With increasing frequency it
behaves as a Timoshenko beam, and at high frequencies its characteristics change as the real
part of the standing near "eld wave tends to zero. It can be seen that the near "eld wave cuts
on and propagates at about �"0)6. This is similar to the behaviour of a Timoshenko
beam, and occurs because of rotational inertia and "nite shear sti!ness. At high frequencies
in a Timoshenko beam, two waves propagate, roughly at the shear and longitudinal wave
speeds. However, in a pipe the waves speeds di!er from these, as can be seen by comparing
the wavenumber expressions given in equations (23a, b) and (23c, d).

For the circumferential modes (n*2), the wavenumbers calculated from the simpli"ed
characteristic equations (31), (33) and (37) are consistent with the referenced theories. The
small departure is because of the several assumptions made. In the "gure, �

��
are the

approximate cut-on frequencies. It is di$cult to distinguish these frequencies obtained from
the simpli"ed and the referenced models because of the slightly di!erent cut-on frequencies.
At very low frequencies for n*2 modes, all waves are standing near "eld. Just before
cut-on, they change to be near "eld waves, and the frequency range over which the near "eld
wave exists is given by equation (41). It can be seen that this frequency range is greater for
the higher modes. Once the wave cuts on and propagates it behaves as a dispersive wave,
but at higher frequencies it becomes non-dispersive for a certain frequency range as can be
seen by the straight-line regions for b"1 in Figure 4. At higher frequencies still, the
k)
��

wavenumber increases as the standing near "eld wavenumbers decrease as discussed
previously. This dependence can clearly be seen by examining equation (37), where the
k)
��

and k)
��

wavenumbers appear in the denominator of the expression for k)
��
. Evaluation of

equation (33) at high frequencies reveals that the near "eld wavenumber is roughly constant
and is of similar magnitude to the circumferential order n.

6. CONCLUSIONS

A simpli"ed characteristic equation of an in vacuo pipe has been established using
FluK gge's shell theory as a basis together with some simplifying assumptions. Using this
equation, and collecting the eight wavenumbers into two groups, one large and one small,
analytical expressions have been derived for the wavenumbers of the n"0 and 1 modes and
the near "eld waves of the n*2 modes. This method may also be used for the n*2 modes
but it is only valid just after the wave cuts on, when the #exural wavenumber is still
relatively small. Alternative expressions for the #exural wave n*2 modes have been
derived in terms of the cut-on frequency and the wavenumbers of the standing near "eld
wavenumbers.
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APPENDIX A

In this appendix, non-dimensional wavenumbers of longitudinal, torsional and #exural
bending waves of a pipe normalized to its radius are given. These are used to describe the
axial wavenumbers of the n"0 and 1 modes of the pipe.

The longitudinal (k
	
), torsional (k

�
), and #exural (k

�
) wavenumbers are, respectively, given

by [6]

k�
	
"���/E, k�

�
"���/G, k�

�
"(�A/EI)��, (A1a}c)

where G"E/2(1#�) is the shear modulus,A"2�ah is the cross-sectional area of the pipe,
and I"�ah(a�#h�/4) is the second moment of area of the pipe. To non-dimensionalize
equation (A1), the wavenumbers are normalized to the radius of the pipe, and are given by
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